Acta Cryst. (1995). C51, 1289-1290

trans-Chloro(methyl)bis(triphenylarsine)palladium(II)

NIGAM P. RATH,* FOLAMI T. LADIPO AND GORDON K. ANDERSON

Department of Chemistry, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO 63121, USA

(Received 17 October 1994; accepted 20 December 1994)

Abstract

The title compound, [PdCl(CH₃)($C_{18}H_{15}As$)₂], was obtained as yellow crystals from the reaction of [PdClMe(1,5-cyclooctadiene)] with triphenylarsine. The molecular structure is approximately square planar, with the two arsine ligands in mutually *trans* positions, and Pd—As distances of 2.3989 (5) and 2.4067 (5) Å, and Pd—Cl and Pd—C distances of 2.4086 (11) and 2.095 (4) Å, respectively.

Comment

Platinum complexes of the type [PtClR(cod)] (where R is alkyl or aryl and cod is 1,5-cyclooctadiene) are convenient and widely used precursors to other organoplatinum derivatives, but of the corresponding palladium diolefin complexes only the methyl species has been reported to date (Rulke, Ernsting, Spek, Elsevier, van Leeuwen & Vrieze, 1993; Ladipo & Anderson, 1994). Our studies of the reactions of [PdClMe(cod)] with neutral ligands have revealed that the cyclooctadiene ligand may be displaced by one ligand to generate dimeric complexes of the type $[Pd_2(\mu-Cl)_2Me_2L_2]$, or by two ligands to give trans-[PdClMeL₂]. Treatment of the bis(ligand) complex with additional [Pd-ClMe(cod)] regenerates the appropriate dimeric compound. During the course of this work, we isolated trans-[PdClMe(AsPh₃)₂], (I), as a crystalline solid.

The structure analysis of *trans*-[PdClMe(AsPh₃)₂] reveals that each molecule adopts approximate squareplanar geometry, with a *trans* disposition of the two arsine ligands (Fig. 1). The two As—Pd—C angles are slightly greater than 90°, whereas the As—Pd— Cl angles are less than 90°. The As—Pd—As and C—Pd—Cl vectors are distorted slightly from linearity [177.53 (2) and 176.54 (12)°, respectively]. The two Pd—As distances are 2.3989 (5) and 2.4067 (5) Å, and the Pd—C and Pd—Cl bond lengths are 2.095 (4) and 2.4086 (11) Å, respectively. The molecular structures of only three other bis(arsine) organopalladium complexes have been reported and two of these have mutually *cis* arsine ligands (Kemmitt, McKenna, Russell & Sherry, 1985; Skelton & White, 1980). The only *trans* complex, [PdCl{C₆H₂(NO₂)₃-2,4,6}(AsPh₃)₂], exhibits Pd—As distances of 2.406 (3) and 2.427 (3) Å, and shorter Pd—C [1.97 (2) Å] and Pd—Cl [2.329 (5) Å] bond lengths (Vicente, Arcas, Borrachero, de Goicoechea, Lanfranchi & Tiripiccio, 1990). The longer Pd—Cl distance in the present compound reflects the stronger *trans* influence of the methyl group compared with the trinitrophenyl moiety.

Fig. 1. View of the title compound showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 30% probability levels.

Experimental

The title compound was obtained by addition of a benzene solution (25 ml) of [PdClMe(cod)] (0.248 g, 0.936 mmol) to solid AsPh₃ (0.572 g, 1.87 mmol). The product began to precipitate immediately and after stirring for 2 h the pale yellow microcrystalline material was filtered off, washed with pentane and air dried (0.489 g, 68%). ¹H NMR (CDCl₃): δ H 0.13 (s, CH₃), 7.40 (m) and 7.67 (m) (C₆H₅). Crystals suitable for X-ray diffraction analysis were grown from benzene solution.

Crystal data

$[PdCl(CH_3)(C_{18}H_{15}As)_2]$	Mo $K\alpha$ radiation
$M_r = 769.32$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 23
$P2_1/n$	reflections
a = 11.793 (3) Å	$\theta = 11.18 - 19.49^{\circ}$
b = 23.267(3) Å	$\mu = 2.702 \text{ mm}^{-1}$
c = 12.7130(10) Å	T = 298 (2) K
$\beta = 111.48(2)^{\circ}$	Rectangular
$V = 3246.0 (10) \text{ Å}^3$	$0.55 \times 0.35 \times 0.30$ mm
Z = 4	Yellow-orange
$D_x = 1.574 \text{ Mg m}^{-3}$	

Data collection

refined

$R_{int} = 0.0630$ $\theta_{max} = 30.07^{\circ}$ $h = 0 \rightarrow 14$ $k = 0 \rightarrow 32$ $l = -17 \rightarrow 16$ 3 standard reflections monitored every 50 reflections intensity decay: 2%	Pd1C1 Pd1As1 Pd1As2 Pd1C1 As1C32 C1Pd1- As1Pd1 C1Pd1- As1Pd1
	As2—Pd1 C32—As1 C32—As1 C20—As1 C32—As1
	C20-As1
$w = 1/[\sigma^2(F_o^2) + (0.0380P)^2]$	C26—As1
where $P = (F_o^2 + 2F_c^2)/3$	C14As2
$(\Delta/\sigma)_{\rm max} = 0.598$	C14As2
$\Delta \rho_{\rm max} = 0.746 \ {\rm e} \ {\rm \AA}^{-3}$	C2—As2-
$\Delta \rho_{\rm min} = -0.358 \ {\rm e} \ {\rm \AA}^{-3}$	The str
Atomic scattering factors	refined a
from International Tables	non-H a
	$\begin{aligned} R_{\text{int}} &= 0.0630\\ \theta_{\text{max}} &= 30.07^{\circ}\\ h &= 0 \rightarrow 14\\ k &= 0 \rightarrow 32\\ l &= -17 \rightarrow 16\\ 3 \text{ standard reflections}\\ \text{monitored every 50}\\ \text{reflections}\\ \text{intensity decay: } 2\% \end{aligned}$ $\begin{aligned} w &= 1/[\sigma^2(F_o^2) + (0.0380P)^2]\\ \text{where } P &= (F_o^2 + 2F_c^2)/3\\ (\Delta/\sigma)_{\text{max}} &= 0.598\\ \Delta\rho_{\text{max}} &= 0.746 \text{ e } \text{\AA}^{-3}\\ \Delta\rho_{\text{min}} &= -0.358 \text{ e } \text{\AA}^{-3}\\ \text{Atomic scattering factors}\\ \text{from International Tables} \end{aligned}$

Vol. C)

for Crystallography (1992,

Table	1.	Fractional	atomic	coordinates	and	equivalent
	1	isotropic dis	splacem	ent paramete	rs (Å	$(2)^{2}$

isotropic displacement parameters (Ų)					
	U_{eq} =	$= (1/3) \sum_i \sum_j U_{ij} d$	$a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$		
	x	у	z	U_{eq}	
Pd1	0.17422 (3)	0.152425 (12)	0.49726 (2)	0.03961 (9)	
As1	0.18040 (4)	0.17225 (2)	0.68446 (3)	0.04087 (11)	
As2	0.16166 (4)	0.12934 (2)	0.30877 (3)	0.03909 (11)	
Cl	0.19688 (10)	0.05164 (4)	0.54353 (8)	0.0536 (3)	
Cl	0.1659 (4)	0.2406 (2)	0.4621 (3)	0.0466 (10)	
C2	0.0236 (3)	0.0827 (2)	0.2191 (3)	0.0425 (9)	
C3	-0.0391 (4)	0.0508 (2)	0.2714 (4)	0.0519 (11)	
C4	-0.1365 (5)	0.0169 (2)	0.2084 (4)	0.0631 (13)	
C5	-0.1720 (5)	0.0152 (2)	0.0937 (4)	0.0690 (15)	
C6	-0.1109 (5)	0.0463 (2)	0.0411 (4)	0.073 (2)	
C7	-0.0133 (5)	0.0798 (2)	0.1028 (4)	0.0603 (13)	
C8	0.1524 (4)	0.1902 (2)	0.2010 (3)	0.0451 (10)	
C9	0.0438 (5)	0.2197 (2)	0.1529 (4)	0.0674 (14)	
C10	0.0331 (6)	0.2634 (2)	0.0756 (4)	0.0729 (15)	
C11	0.1303 (6)	0.2781 (2)	0.0486 (4)	0.073 (2)	
C12	0.2373 (6)	0.2500 (3)	0.0958 (5)	0.079 (2)	
C13	0.2477 (5)	0.2058 (2)	0.1724 (4)	0.0631 (13)	
C14	0.3021 (4)	0.0848 (2)	0.3121 (3)	0.0416 (9)	
C15	0.3003 (5)	0.0507 (2)	0.2236 (4)	0.0664 (14)	
C16	0.3996 (6)	0.0182 (2)	0.2302 (6)	0.078 (2)	
C17	0.5014 (6)	0.0203 (2)	0.3249 (6)	0.074 (2)	
C18	0.5063 (5)	0.0541 (3)	0.4108 (5)	0.069 (2)	
C19	0.4074 (4)	0.0867 (2)	0.4064 (4)	0.0561 (12)	
C20	0.0379 (4)	0.1452 (2)	0.7123 (3)	0.0434 (9)	
C21	0.0041 (5)	0.1674 (2)	0.7973 (4)	0.0599 (12)	
C22	-0.0984 (6)	0.1474 (3)	0.8120 (5)	0.074 (2)	
C23	-0.1675 (5)	0.1055 (3)	0.7435 (5)	0.075 (2)	
C24	-0.1330 (5)	0.0823 (2)	0.6607 (5)	0.0646 (14)	
C25	-0.0321 (4)	0.1023 (2)	0.6444 (4)	0.0507 (11)	
C26	0.1999 (4)	0.2504 (2)	0.7435 (3)	0.0417 (9)	
C27	0.3107 (4)	0.2697 (2)	0.8163 (4)	0.0570 (12)	
C28	0.3244 (5)	0.3252 (2)	0.8576 (5)	0.0652 (14)	
C29	0.2277 (5)	0.3615 (2)	0.8270 (4)	0.0640 (13)	
C30	0.1154 (5)	0.3426 (2)	0.7545 (4)	0.0660 (14)	
C31	0.1021 (4)	0.2879 (2)	0.7117 (4)	0.0573 (12)	
C32	0.3188 (4)	0.1370 (2)	0.7990 (3)	0.0437 (10)	
C33	0.4261 (5)	0.1348 (2)	0.7803 (4)	0.0646 (13)	
C34	0.5349 (5)	0.1177 (2)	0.8667 (5)	0.079 (2)	
C35	0.5311 (7)	0.1010 (2)	0.9673 (5)	0.088 (2)	
C36	0.4245 (6)	0.1023 (3)	0.9872 (5)	0.092 (2)	
C37	0.3185 (5)	0.1212 (3)	0.9016 (4)	0.073 (2)	

	Table 2.	Selected	geometric	parameters ((Å.	0)
--	----------	----------	-----------	--------------	-----	---	---

1C1	2.095 (4)	As1C20	1.945 (4)
1—As1	2.3989 (5)	As1C26	1.949 (4)
1—As2	2.4067 (5)	As2C14	1.940 (4)
1Cl	2.4086 (11)	As2—C2	1.941 (4)
1C32	1.927 (4)	As2C8	1.945 (4)
—Pd1—As1	90.29 (10)	C14—As2—Pd1	110.89 (11)
—Pd1—As2	91.46 (10)	C2—As2—Pd1	116.23 (11)
1—Pd1—As2	177.53 (2)	C8—As2—Pd1	120.38 (11)
—Pd1—Cl	176.54 (12)	C3-C2-As2	120.0 (3)
1—Pd1—C1	89.12 (3)	C7C2As2	121.6 (3)
2—Pd1—Cl	89.24 (3)	C13-C8-As2	123.2 (3)
2—As1—C20	105.9 (2)	C9-C8-As2	118.5 (3)
2-As1-C26	99.1 (2)	C15C14As2	122.3 (3)
0-As1-C26	102.7 (2)	C19-C14-As2	119.5 (3)
2—As1—Pd1	112.16 (12)	C25-C20-As1	118.6 (3)
0As1Pd1	113.83 (12)	C21-C20-As1	122.5 (3)
6—As1—Pd1	121.19 (11)	C27-C26-As1	120.9 (3)
4As2C2	103.9 (2)	C31-C26-As1	120.5 (3)
4As2C8	103.4 (2)	C37-C32-As1	122.8 (4)
—As2—C8	100.1 (2)	C33-C32-As1	117.8 (3)

The structure was solved by the Patterson method and refined successfully in the monoclinic space group $P2_1/n$. The non-H atoms were refined anisotropically. Phenyl H atoms were refined freely (C—H = 0.77–1.02 Å) with isotropic displacement parameters. The methyl H atoms were treated as an idealized group with tetrahedral angles and C—H = 0.96 Å using the AFIX137 option in SHELXL93 (Sheldrick, 1993).

Data collection: Siemens P3 data collection software. Cell refinement: Siemens P3 data collection software. Data reduction: XDISK (Siemens, 1991). Program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1991). Program(s) used to refine structure: SHELXL93. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXTL-Plus.

This work was supported by a grant from the National Science Foundation (CHE-9101834).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1047). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kemmitt, R. D. W., McKenna, P., Russell, D. R. & Sherry, L. J. S. (1985). J. Chem. Soc. Dalton Trans. pp. 259-268.
- Ladipo, F. T. & Anderson, G. K. (1994). Organometallics, 13, 303-306.
- Rulke, R. E., Ernsting, J. M., Spek, A. L., Elsevier, C. J., van Leeuwen, P. W. N. M. & Vrieze, K. (1993). *Inorg. Chem.* 32, 5769–5778.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Siemens (1991). XDISK. Data Reduction Program. Version 3.11. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 - Skelton, B. W. & White, A. H. (1980). J. Chem. Soc. Dalton Trans. pp. 1556–1566.
- Vicente, J., Arcas, A., Borrachero, M. V., de Goicoechea, M. L., Lanfranchi, M. & Tiripiccio, A. (1990). *Inorg. Chim. Acta*, 177, 247-253.